Gaussian Error Function

The Gaussian error function is defined as the following:

The Gaussian Error Function is used with semi-infinite solid analysis. The Gaussian Distribution (aka Normal Distribution) appears in heat transfer purely by coincidence. Shown in 7A - 2nd Class Notes the equation for the Gaussian distribution appears while preforming a similarity transformation. We end up needed to find the area under the distribution over some arbitrary bounds, as it happens an easy (non-calculus) way to find this area already exists in the form of the error function.

The complementary error is defined as the following function:

Table B.2 Gaussian Error Function from the textbook:

w
erf w
w
erf w
w
erf w
0.00
0.00000
0.36
0.38933
1.04
0.85865
0.02
0.02256
0.38
0.40901
1.08
0.87333
0.04
0.04511
0.40
0.42839
1.12
0.88679
0.06
0.06762
0.44
0.46622
1.16
0.89910
0.08
0.09008
0.48
0.50275
1.20
0.91031
0.10
0.11246
0.52
0.53790
1.30
0.93401
0.12
0.13476
0.56
0.57162
1.40
0.95228
0.14
0.15695
0.60
0.60386
1.50
0.96611
0.16
0.17901
0.64
0.63459
1.60
0.97635
0.18
0.20094
0.68
0.66378
1.70
0.98379
0.20
0.22270
0.72
0.69143
1.80
0.98909
0.22
0.24430
0.76
0.71754
1.90
0.99279
0.24
0.26570
0.80
0.74210
2.00
0.99532
0.26
0.28690
0.84
0.76514
2.20
0.99814
0.28
0.30788
0.88
0.78669
2.40
0.99931
0.30
0.32863
0.92
0.80677
2.60
0.99976
0.32
0.34913
0.96
0.82542
2.80
0.99992
0.34
0.36936
1.00
0.84270
3.00
0.99998